

Graphene-JS

Contents:

	Getting started
	Requirements

	Project setup

	Creating a basic Schema

	Querying

	Types Reference
	Enums

	Scalars

	Lists and Non-Null

	Interfaces

	Unions

	ObjectTypes

	Schema

	Relay
	Useful links

	Incremental adoption
	Graphene-JS types in GraphQL

	GraphQL types in Graphene

Integrations

	Graphene-sequelize [http://docs.graphene-js.org/projects/sequelize/en/latest/] (source [https://github.com/graphql-js/graphene-sequelize/])

Getting started

For an introduction to GraphQL and an overview of its concepts, please refer
to the official introduction [http://graphql.org/learn/].

Let’s build a basic GraphQL schema from scratch.

Requirements

	Node.js

	Graphene-JS

Project setup

npm install graphene-js
or
yarn add graphene-js

Creating a basic Schema

A GraphQL schema describes your data model, and provides a GraphQL
server with an associated set of resolve methods that know how to fetch
data.

We are going to create a very simple schema, with a Query with only
one field: hello and an input name. And when we query it, it should return "Hello {name}".

import { ObjectType, Field, Schema } from "graphene-js";

@ObjectType()
class Query {
 @Field(String, {args: {name: String}})
 hello({name}) {
 return `Hello ${name || "stranger"}`;
 }
}

schema = new Schema({query: Query})

Querying

Then we can start querying our schema:

var result = await schema.execute('{ hello }')
console.log(result.data.hello) # "Hello stranger"

Congrats! You got your first graphene schema working!

Types Reference

	Enums

	Scalars

	Lists and Non-Null

	Interfaces

	Unions

	ObjectTypes

	Schema

Enums

A Enum is a special GraphQL type that represents a set of
symbolic names (members) bound to unique, constant values.

Definition

You can create an Enum using classes:

import { EnumType } from "graphene-js";

@EnumType()
class Episode {
 static NEWHOPE = 4
 static EMPIRE = 5
 static JEDI = 6
}

Graphene will automatically search for the static variables in the Enum and expose
them as the enum values.

Value descriptions

It’s possible to add a description to an enum value, for that the enum value
needs to have the ``description``decorator on it.

@EnumType()
class Episode {
 @description("New hope episode")
 static NEWHOPE = 4

 @description("Empire episode")
 static EMPIRE = 5

 @description("JEDI episode")
 static JEDI = 6
}

Scalars

All Scalar types accept the following arguments. All are optional:

Base scalars

String

Represents textual data, represented as UTF-8
character sequences. The String type is most often used by GraphQL to
represent free-form human-readable text.

Int

Represents non-fractional signed whole numeric
values. Int can represent values between -(2^53 - 1) and 2^53 - 1 since
represented in JSON as double-precision floating point numbers specified
by IEEE 754 [http://en.wikipedia.org/wiki/IEEE_floating_point].

Float

Represents signed double-precision fractional
values as specified by
IEEE 754 [http://en.wikipedia.org/wiki/IEEE_floating_point].

Boolean

Represents true or false.

ID

Represents a unique identifier, often used to
refetch an object or as key for a cache. The ID type appears in a JSON
response as a String; however, it is not intended to be human-readable.
When expected as an input type, any string (such as “4”) or integer
(such as 4) input value will be accepted as an ID.

Graphene also provides custom scalars for Dates, Times, and JSON:

graphene.Date

Represents a Date value as specified by iso8601 [https://en.wikipedia.org/wiki/ISO_8601].

graphene.DateTime

Represents a DateTime value as specified by iso8601 [https://en.wikipedia.org/wiki/ISO_8601].

graphene.Time

Represents a Time value as specified by iso8601 [https://en.wikipedia.org/wiki/ISO_8601].

Custom scalars

You can create custom scalars for your schema.
The following is an example for creating a DateTime scalar:

 import { GraphQLScalarType } from "graphql";

 const Date = new GraphQLScalarType({
 name: 'Date',
 description: 'Date custom scalar type',
 parseValue(value) {
 return new Date(value); // value from the client
 },
 serialize(value) {
 return value.getTime(); // value sent to the client
 },
 parseLiteral(ast) {
 if (ast.kind === Kind.INT) {
 return parseInt(ast.value, 10); // ast value is always in string format
 }
 return null;
 },
});

Lists and Non-Null

Object types, scalars, and enums are the only kinds of types you can
define in Graphene. But when you use the types in other parts of the
schema, or in your query variable declarations, you can apply additional
type modifiers that affect validation of those values.

List

import { ObjectType, List } from "graphene-js";

@ObjectType()
class Character {
 @Field(List(String)) appearsIn;
}

Lists work in a similar way: We can use a type modifier to mark a type as a
List, which indicates that this field will return a list of that type.
It works the same for arguments, where the validation step will expect a list
for that value.

For ease of development, we can directly use js lists with one element [].

Like:

import { ObjectType, Field } from "graphene-js";

@ObjectType()
class Character {
 @Field([String]) appearsIn;
}

NonNull

import { ObjectType, Field, NonNull } from "graphene-js";

@ObjectType()
class Character {
 @Field(NonNull(String)) name;
}

Here, we’re using a String type and marking it as Non-Null by wrapping
it using the NonNull class. This means that our server always expects
to return a non-null value for this field, and if it ends up getting a
null value that will actually trigger a GraphQL execution error,
letting the client know that something has gone wrong.

Interfaces

An Interface contains the essential fields that will be implemented by
multiple ObjectTypes.

The basics:

	Each Interface is class decorated with InterfaceType.

	Each attribute decorated with @Field represents a GraphQL Field in the
Interface.

Quick example

This example model defines a Character interface with a name. Human
and Droid are two implementations of that interface.

import { InterfaceType, ObjectType, Field } from "graphene-js";

@InterfaceType()
class Character {
 @Field(String) name;
}

// Human is a Character implementation
@ObjectType({
 interfaces: [Character]
})
class Human {
 @Field(String) bornIn;
}

// Droid is a Character implementation
@ObjectType({
 interfaces: [Character]
})
class Human {
 @Field(String) function;
}

name is a field on the Character interface that will also exist on both
the Human and Droid ObjectTypes (as those implement the Character
interface). Each ObjectType may define additional fields.

The above types have the following representation in a schema:

interface Character {
 name: String
}

type Droid implements Character {
 name: String
 function: String
}

type Human implements Character {
 name: String
 bornIn: String
}

Unions

Union types are very similar to interfaces, but they don’t get
to specify any common fields between the types.

The basics:

	Each Union is a JS class decorated with UnionType.

	Unions don’t have any fields on it, just links to the possible objecttypes.

Quick example

This example model defines several ObjectTypes with their own fields.
SearchResult is the implementation of Union of this object types.

import { ObjectType, UnionType, Field } from "graphene-js";

class Human {
 @Field(String) name;
 @Field(String) bornIn;
}

class Droid {
 @Field(String) name;
 @Field(String) primaryFunction;
}

class Starship {
 @Field(String) name;
 @Field(Number) length;
}

const SearchResult = new UnionType({
 name: 'SearchResult',
 types: [Human, Droid, Starship]
})

Wherever we return a SearchResult type in our schema, we might get a Human, a Droid, or a Starship.
Note that members of a union type need to be concrete object types;
you can’t create a union type out of interfaces or other unions.

The above types have the following representation in a schema:

type Droid {
 name: String
 primaryFunction: String
}

type Human {
 name: String
 bornIn: String
}

type Ship {
 name: String
 length: Int
}

union SearchResult = Human | Droid | Starship

ObjectTypes

An ObjectType is the single, definitive source of information about your
data. It contains the essential fields and behaviors of the data you’re
querying.

The basics:

	Each ObjectType is a Python class that inherits from
graphene.ObjectType.

	Each attribute of the ObjectType represents a Field.

Quick example

This example model defines a Person, with a first and a last name:

import { ObjectType, Field } from "graphene-js";

@ObjectType()
class Person {
 @Field(String) firstName;
 @Field(String) lastName;
 @Field(String)
 fullName() {
 return `${this.firstName} ${this.lastName}`;
 }
}

firstName and lastName are fields of the ObjectType. Each
field is specified as a class attribute, and each attribute maps to a
Field.

The above Person ObjectType has the following schema representation:

type Person {
 firstName: String
 lastName: String
 fullName: String
}

Resolvers

A resolver is a method that resolves certain fields within a
ObjectType. If not specififed otherwise, the resolver of a
field is the resolve_{field_name} method on the ObjectType.

By default resolvers take the arguments args, context and info.

Quick example

This example model defines a Query type, which has a reverse field
that reverses the given word argument using the resolve_reverse
method in the class.

import { ObjectType, Field } from "graphene-js";

@ObjectType()
class Query {
 @Field(String, {args: {word: String}})
 reverse({word}) {
 return (word || "").split("").reverse().join("")
 }
}

Instances as data containers

Graphene ObjectTypes can act as containers too. So with the
previous example you could do:

peter = new Person({firstName: "", lastName: ""})

peter.firstName # prints "Peter"
peter.lastName # prints "Griffin"

Schema

A Schema is created by supplying the root types of each type of operation, query, mutation and subscription.
A schema definition is then supplied to the validator and executor.

import { Schema } from "graphene-js";

const schema = new Schema({
 query: MyRootQuery,
 mutation: MyRootMutation,
})

Types

There are some cases where the schema cannot access all of the types that we plan to have.
For example, when a field returns an Interface, the schema doesn’t know about any of the
implementations.

In this case, we need to use the types argument when creating the Schema.

const schema = new Schema({
 query: MyRootQuery,
 types=[SomeExtraType,],
})

Querying

To query a schema, call the execute method on it.

await schema.execute('{ hello }')

Relay

Graphene Relay [https://facebook.github.io/relay/docs/graphql-relay-specification.html] integration is on the works.

Useful links

	Getting started with Relay [https://facebook.github.io/relay/docs/graphql-relay-specification.html]

	Relay Global Identification Specification [https://facebook.github.io/relay/graphql/objectidentification.htm]

	Relay Cursor Connection Specification [https://facebook.github.io/relay/graphql/connections.htm]

	Relay input Object Mutation [https://facebook.github.io/relay/graphql/mutations.htm]

Incremental adoption

Graphene-JS is designed to be adopted incrementally, that means that you will
be able to use Graphene types inside of your already existing schema and
viceversa.

Graphene-JS types in GraphQL

Using Graphene types with your existing GraphQL types is very easy.
The module have a utility function getGraphQLType that you can use to retrieve
the native GraphQL type behind a Graphene type.

For example:

import { GraphQLSchema, GraphQLObjectType } from "graphql";
import { ObjectType, Field, getGraphQLType } from "graphene-js";

// Your graphene definition
@ObjectType()
class User {
 @Field(String) name
}

// Your normal GraphLQL types
var query = new GraphQLObjectType({
 name: 'Query',
 fields: {
 viewer: {
 // Note getGraphQLType(User) will return a GraphQLObjectType
 // that can be safely used in GraphQL types
 type: getGraphQLType(User),
 }
 }
});

GraphQL types in Graphene

Graphene can operate with native GraphQL types seamlessly, with no extra effort
for the developer. You can use GraphQL native types directly in Graphene

For example:

import { ObjectType, Field } from "graphene-js";

var User = GraphQLObjectType({
 name: 'User',
 fields: {
 name: {
 type: GraphQLString,
 }
 }
});

@ObjectType()
class Query {
 // User is a native GraphQL type
 @Field(User) user;
}

Index

Mutations

Most APIs don’t just allow you to read data, they also allow you to
write.

In GraphQL, this is done using mutations. Just like queries,
Relay puts some additional requirements on mutations, but Graphene
nicely manages that for you. All you need to do is make your mutation a
subclass of relay.ClientIDMutation.

class IntroduceShip(relay.ClientIDMutation):

 class Input:
 ship_name = graphene.String(required=True)
 faction_id = graphene.String(required=True)

 ship = graphene.Field(Ship)
 faction = graphene.Field(Faction)

 @classmethod
 def mutate_and_get_payload(cls, root, info, **input):
 ship_name = input.ship_name
 faction_id = input.faction_id
 ship = create_ship(ship_name, faction_id)
 faction = get_faction(faction_id)
 return IntroduceShip(ship=ship, faction=faction)

Accepting Files

Mutations can also accept files, that’s how it will work with different integrations:

class UploadFile(graphene.ClientIDMutation):
 class Input:
 pass
 # nothing needed for uploading file

 # your return fields
 success = graphene.String()

 @classmethod
 def mutate_and_get_payload(cls, root, info, **input):
 # When using it in Django, context will be the request
 files = info.context.FILES
 # Or, if used in Flask, context will be the flask global request
 # files = context.files

 # do something with files

 return UploadFile(success=True)

Connection

A connection is a vitaminized version of a List that provides ways of
slicing and paginating through it. The way you create Connection types
in graphene is using relay.Connection and relay.ConnectionField.

Quick example

If we want to create a custom Connection on a given node, we have to subclass the
Connection class.

In the following example, extra will be an extra field in the connection,
and other an extra field in the Connection Edge.

@ConnectionType({
 Edge: Edge,
 node: Ship,
})
class ShipConnection {
 @Field(String) extra;
}

The ShipConnection connection class, will have automatically a pageInfo field,
and a edges field (which is a list of ShipConnection.Edge).
This Edge will have a node field linking to the specified node
(in ShipConnection.Meta) and the field other that we defined in the class.

Connection Field

You can create connection fields in any Connection, in case any ObjectType
that implements Node will have a default Connection.

class Faction(graphene.ObjectType):
 name = graphene.String()
 ships = relay.ConnectionField(ShipConnection)

 def resolve_ships(self, info):
 return []

Nodes

A Node is an Interface provided by graphene.relay that contains
a single field id (which is a ID!). Any object that inherits
from it has to implement a get_node method for retrieving a
Node by an id.

Quick example

Example usage (taken from the Starwars Relay example [https://github.com/graphql-python/graphene/blob/master/examples/starwars_relay/schema.py]):

class Ship(graphene.ObjectType):
 '''A ship in the Star Wars saga'''
 class Meta:
 interfaces = (relay.Node,)

 name = graphene.String(description='The name of the ship.')

 @classmethod
 def get_node(cls, info, id):
 return get_ship(id)

The id returned by the Ship type when you query it will be a
scalar which contains enough info for the server to know its type and
its id.

For example, the instance Ship(id=1) will return U2hpcDox as the
id when you query it (which is the base64 encoding of Ship:1), and
which could be useful later if we want to query a node by its id.

Custom Nodes

You can use the predefined relay.Node or you can subclass it, defining
custom ways of how a node id is encoded (using the to_global_id method in the class)
or how we can retrieve a Node given a encoded id (with the get_node_from_global_id method).

Example of a custom node:

class CustomNode(Node):

 class Meta:
 name = 'Node'

 @staticmethod
 def to_global_id(type, id):
 return '{}:{}'.format(type, id)

 @staticmethod
 def get_node_from_global_id(info global_id, only_type=None):
 type, id = global_id.split(':')
 if only_node:
 # We assure that the node type that we want to retrieve
 # is the same that was indicated in the field type
 assert type == only_node._meta.name, 'Received not compatible node.'

 if type == 'User':
 return get_user(id)
 elif type == 'Photo':
 return get_photo(id)

The get_node_from_global_id method will be called when CustomNode.Field is resolved.

Accessing node types

If we want to retrieve node instances from a global_id (scalar that identifies an instance by it’s type name and id),
we can simply do Node.get_node_from_global_id(info, global_id).

In the case we want to restrict the instance retrieval to a specific type, we can do:
Node.get_node_from_global_id(info, global_id, only_type=Ship). This will raise an error
if the global_id doesn’t correspond to a Ship type.

Node Root field

As is required in the Relay specification [https://facebook.github.io/relay/docs/graphql-relay-specification.html], the server must implement
a root field called node that returns a Node Interface.

For this reason, graphene provides the field relay.Node.Field,
which links to any type in the Schema which implements Node.
Example usage:

class Query(graphene.ObjectType):
 # Should be CustomNode.Field() if we want to use our custom Node
 node = relay.Node.Field()

 _static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/comment.png

nav.xhtml

 Table of Contents

 		Graphene-JS

 		Getting started

 		Requirements

 		Project setup

 		Creating a basic Schema

 		Querying

 		Types Reference

 		Enums

 		Definition

 		Value descriptions

 		Scalars

 		Base scalars

 		Custom scalars

 		Lists and Non-Null

 		List

 		NonNull

 		Interfaces

 		Quick example

 		Unions

 		Quick example

 		ObjectTypes

 		Quick example

 		Resolvers

 		Instances as data containers

 		Schema

 		Types

 		Querying

 		Relay

 		Useful links

 		Incremental adoption

 		Graphene-JS types in GraphQL

 		GraphQL types in Graphene

