

Graphene Sequelize

Contents:

	Introduction tutorial - Graphene and Sequelize
	Project setup

	Querying

Introduction tutorial - Graphene and Sequelize

Graphene has a number of additional features that are designed to make
working with Sequelize really simple.

Our primary focus here is to give a good understanding of how to connect models from Sequelize to Graphene object types.

A good idea is to check the graphene [http://docs.graphene-js.org/en/latest/] documentation first.

	Node or Typescript(any)

	Graphene-JS

Project setup

yarn add graphene-sequelize
or
npm install graphene-sequelize

Defining our models

Let’s get started with these models:

import * as Sequelize from "sequelize";

// We define the Sequelize Models
export const sequelize = new Sequelize('database', 'username', 'password', {
 dialect: 'sqlite',
 storage: 'db.sqlite',
});

export const Project = sequelize.define('project', {
 title: Sequelize.STRING,
 description: Sequelize.TEXT
})

export const Task = sequelize.define('task', {
 title: Sequelize.STRING,
 description: Sequelize.TEXT,
 deadline: Sequelize.DATE
})

GraphQL presents your objects to the world as a graph structure rather
than a more hierarchical structure to which you may be accustomed. In
order to create this representation, Graphene needs to know about each
type of object which will appear in the graph.

This graph also has a root type through which all access begins. This
is the Query class below.

This means, for each of our models, we are going to create a type, decorating with SequelizeObjectType

After we’ve done that, we will list those types as fields in the Query class.

import { ObjectType, Field, NonNull } from "graphene-js";
import { SequelizeObjectType } from "graphene-sequelize";

@SequelizeObjectType({model: Project})
class ProjectType {
 // We can add here additional files
}

@SequelizeObjectType({model: Task})
class TaskType {
 // We can add here additional files
}

@ObjectType()
class Query {
 @Field(ProjectType, { args: {id: NonNull(String)}})
 getProject({id}) {
 return Project.findById(id);
 }
}

schema = new Schema({query: Query})

Querying

Then we can start querying our schema:

var result = await schema.execute('{ getProject(id: "1") { id, title } }')
console.log(result.data.getProject)

Congrats! You got your first graphene sequelize schema working!

Index

 nav.xhtml

 Table of Contents

 		Graphene Sequelize

 		Introduction tutorial - Graphene and Sequelize

 		Project setup

 		Defining our models

 		Querying

_static/minus.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

